Gumbel (Type I) Distribution
Where do you meet this distribution?
- Extreme value theory (EVT)
- Risk management -- Operational risk
Shape of Distribution
Basic Properties
-
Two parameters are required (How can you get these).
-
Continuous distribution defined on entire range
-
This distribution is always asymmetric.
Probability
-
Cumulative distribution function
-
How to compute these on Excel.
| A | B | |
|---|---|---|
| 1 | Data | Description |
| 2 | 0.5 | Value for which you want the distribution |
| 3 | 8 | Value of parameter Alpha |
| 4 | 2 | Value of parameter Beta |
| 5 | Formula | Description (Result) |
| 6 | =NTGUMBELDIST(A2,A3,A4,TRUE) | Cumulative distribution function for the terms above |
| 7 | =NTGUMBELDIST(A2,A3,A4,FALSE) | Probability density function for the terms above |

- Function reference : NTGUMBELDIST
Quantile
-
Inverse function of cumulative distribution function
-
How to compute this on Excel.
| A | B | |
|---|---|---|
| 1 | Data | Description |
| 2 | 0.7 | Probability associated with the distribution |
| 3 | 1.7 | Value of parameter Alpha |
| 4 | 0.9 | Value of parameter Beta |
| 5 | Formula | Description (Result) |
| 6 | =GUMBELINV(A2,A3,A4) | Inverse of the cumulative distribution function for the terms above |
- Function reference : NTGUMBELINV
Characteristics
Mean -- Where is the "center" of the distribution? (Definition)
-
Mean of the distribution is given as
where